Сплавы для электронагревателей

Сплавы для электронагревателей.

Материалы для электронагревателей делятся на металлические и неметаллические (MoSi2, SiC). Здесь рассматриваются только металлические деформируемые материалы.

Требования к сплавам этой группы:

1. Высокая жаростойкость.

2. Высокое электрическое сопротивление, позволяющее сосредоточить требуемую тепловую мощность в малом объеме.

3. Достаточная крипоустойчивость, обусловливающая сохранение геометрии нагревателей в процессе эксплуатации.

4. Удовлетворительная пластичность в холодном состоянии, обеспечивающая возможность изготовления нагревательных элементов нужной геометрии.

Общая характеристика и применение сплавов. Наибольшее распространение получили две группы сплавов — железохромалюминиевые и нихромы (табл. 161). 

 

Химический состав сплавов для электронагревателей (ГОСТ 12766—67)

Сплавы с индексами А и Н — наиболее высокого качества, которое обеспечивается прецизионной технологией их изготовления. Их легируют микродобавками редкоземельных и некоторых других металлов, оказывающими существенное влияние на процессы окисления при высоких температурах. Назначение сплавов и рабочие температуры нагревательных элементов приведены в табл. 162, 163.

Рекомендации по применению сплавов в различных атмосферах

Основное назначение сплавов и область рабочих температур в окислительных атмосферах

Сплавы для нагревателей производят преимущественно в виде проволоки и ленты, реже в виде горячекатаных прутков (табл. 164).

Предельные размеры проволоки, ленты и прутков из сплавов для электронагревателей, мм (ГОСТ 12766—67)

В табл. 165 приведены размеры и допускаемые отклонения холоднокатаной ленты.

Размеры и допускаемые отклонения холоднокатаной ленты из сплавов для электронагревателей (ГОСТ 12766—67), мм

Диаметры и соответствующие отклонения холоднотянутой проволоки, мм (ГОСТ 12766—67; 2771—57):

Диаметры и соответствующие отклонения холоднотянутой проволоки

Допускаемые отклонения размеров горячекатаной проволоки, мм (ГОСТ 12766—67; 2590—57):

Допускаемые отклонения размеров горячекатаной проволоки

Нормируемые свойства. Допустимые пределы удельного электрического сопротивления сплавов при комнатной температуре в зависимости от диаметра проволоки или толщины ленты приведены в табл. 166.

Нормируемые свойства сплавов для электронагревателей (ГОСТ 12766—67)

С повышением температуры электросопротивление сплавов меняется (рис. 295).

Зависимость удельного электросопротивления (ρ) нихромов и железохромалюминиевых сплавов от температуры

Поэтому при расчете электрического сопротивления нагревателей необходимо пользоваться поправочными коэффициентами табл. 167.

Поправочные коэффициенты для расчета электрического сопротивления сплавов для электронагревателей в зависимости от температуры

Поправочные коэффициенты для расчета электрического сопротивления сплавов для электронагревателей в зависимости от температуры

Жаростойкость сплавов контролируется путем испытания проволочных образцов на живучесть. Под живучестью понимается срок службы образцов из проволоки диаметром 0,8 мм при циклическом (2-мин нагрев, 2-мин охлаждение) режиме нагрева током (ГОСТ 2419—58). Температуры испытаний и нормы по живучести в соответствии с ГОСТ 12766—67 см. в табл. 166.

Оценка пластичности проволоки диаметром 0,2—6,0 мм производится методом навивки в соответствии с ГОСТ 10447—63 и 12766—67. При навивке на стержень определенного диаметра не должно появляться трещин. Относительное удлинение холоднокатаной ленты в состоянии поставки должно отвечать нормам, приведенным в табл. 166.

Физические и механические свойства (табл. 168, 169). При выдержках в интервале 450—500°С сплавов Fe—Сr и Fe—Cr—Аl повышаются твердость, прочность, уменьшается пластичность, ударная вязкость, удельное электрическое сопротивление и коррозионная стойкость.

Физические свойства сплавов для электронагревателей

Механические свойства сплавов при кратковременных испытаниях на разрыв в зависимости от температуры

Изменения наиболее четко проявляются после выдержки при 475°С, вследствие чего это явление принято называть 475-град хрупкостью. В сплавах Fe—Сr с 15—85% Сr происходит расслоение твердого раствора с образованием когерентных и изоморфных выделений, концентрация хрома в которых достигает 75—85%. Скорость процесса расслоения максимальна в первые моменты старения и постепенно уменьшается. Алюминий оказывает ускоряющее влияние на процесс старения в сплавах на железохромовой основе.

Охрупчивание сплавов наблюдается уже при медленном охлаждении металла ниже 500°С. Однако процесс охрупчивания является легко обратимым. Для устранения хрупкости применяют обычно закалку металла в воду с 750—860°С. Нагрев до более высокой температуры нецелесообразен, так как выше 900—950°С происходит довольно быстрый рост зерна, часто приводящий к снижению пластичности, не устраняемый последующей термической обработкой.

Наличие 475-град хрупкости приводит к тому, что нагреватели уже после первого нагрева до рабочих температур и медленного охлаждения становятся хрупкими и не выдерживают в холодном состоянии изгиба, резких динамических нагрузок, встрясок и т. д.

При высоких температурах сплавы Fe—Сr—Аl, как и другие сплавы ферритного класса, имеют низкую крипоустойчивость, что при температурах выше 1100—1200°С приводит к провисанию нагревателей под действием собственного веса. Поэтому для предотвращения значительного провисания рекомендуется располагать нагреватели на опорах по всей длине.

При комнатной температуре сплавы 0Х23Ю5, 0Х23Ю5А и особенно 0Х27Ю5А обладают пониженной пластичностью. Поэтому из ленты толщиной более 2 мм и проволоки диаметром свыше 5 мм нагреватели рекомендуется изготовлять после предварительного подогрева металла до 200—350°С.

Нихромы достаточно пластичны как в исходном состоянии, так и в процессе эксплуатации. Обычный режим умягчающей термической обработки для них: нагрев до 1000—1050°С, охлаждение в воде или на воздухе.

Некоторые физические свойства сплавов приведены в табл. 168, а в табл. 169 указаны механические свойства при различных температурах.

Эксплуатационные особенности сплавов. Сплавы Fe—Сr—Аl склонны к химическому взаимодействию с рядом окислов и металлов. Для них в отличие от нихромов не пригодна любая керамика, выпускаемая промышленностью для высокотемпературных печей. Для температур 1100—1400°C огнеупорная масса должна содержать не менее 75% глинозема и минимальное количество окислов железа (менее 1%). Для температур 900—1100°С пригодна огнеупорная масса, содержащая не менее 60% глинозема и менее 1% окислов железа. Этим требованиям отвечает шамот класса А.

В практике хорошо зарекомендовал себя способ обмазывания керамики в местах контакта с нагревательными элементами высокоглиноземистой массой [смесь 30% корунда крупной фракции (~25 мкм), 45% корунда мелкой фракции (~5 мкм), 25% каолина и воды].

Разрушающе действуют на окалину сплавов Fe—Сr—Аl пары и брызги некоторых металлов — меди, цинка, алюминия, свинца. Недопустим контакт поверхности нагревателя с кремнеземом, поваренной солью, шлаками, эмалями, асбестом и железной окалиной. Недопустимо также изготовлять нагреватели из поржавевшей проволоки и ленты. Следует учитывать, что сплавы Fe—Сr—Аl имеют длительный срок службы лишь при условии высокой культуры их эксплуатации.

Нихромы проявляют значительно меньшую склонность к взаимодействию с керамикой, однако такие случаи возможны. Например, на них разрушающе действует контакт с асбестом при температуре выше 400°С.

Атмосфера печи. В углеродсодержащих средах (СО—СO2—СН4—Н2—Н2O—N2) может происходить науглероживание сплавов, особенно в средах с высоким углеродным потенциалом.

Сплавы Fe—Сr—Аl (0Х23Ю5А и 0Х27Ю5А) в этих средах более стойки, чем Ni—Сr, так как окисная пленка, содержащая окислы алюминия, препятствует науглероживанию. Окись хрома, образующаяся на нихромах, проницаема для углерода, в результате чего в металле образуется значительное количество карбида хрома. В атмосферах, содержащих серу и сернистые соединения, сплавы Fe—Сr—Аl также более устойчивы, чем нихромы.

В вакууме при высоких температурах одновременно происходит процесс окисления и испарения (возгонки), причем окисление протекает значительно слабее, чем при атмосферном давлении. Чем выше температура и ниже давление, тем интенсивнее испарение. При давлении 10–4 мм рт. ст. интенсивное испарение начинается с температуры 1100°С (табл. 170). Предварительное окисление нагревателей на воздухе замедляет испарение, однако временно, поскольку образовавшиеся окислы постепенно диссоциируют. Наиболее интенсивно испаряются компоненты, обладающие более высокой упругостью пара. У железохромалюминиевых сплавов такими компонентами являются алюминий и хром, у нихромов — хром и кремний.

Средняя скорость испарения за период 80—180 ч сплавов Х20Н80, 0Х27Ю5А и 0Х23Ю5 в вакууме СH при различных температурах

Средняя скорость испарения за период 80—180 ч сплавов Х20Н80, 0Х27Ю5А и 0Х23Ю5 в вакууме СH при различных температурах

Данные табл. 170 показывают, что сплавы Fe—Сr—Аl испаряются более интенсивно, чем нихромы.

При конструировании вакуумных печей следует учитывать возможность металлизации электроизоляционных материалов, что может привести к пробою через них. Может также происходить загрязнение нагреваемых в печи материалов, которые при необходимости следует защищать экранами.

В восстановительной атмосфере нихромы более устойчивы. В атмосфере с высоким содержанием окиси углерода, светильном газе сплавы Fe—Сr—Аl применять не рекомендуется. Возможно их применение в атмосфере очищенного сухого водорода.

Рекомендации по применению сплавов в различных средах см. в табл. 163.

Сварка. При изготовлении нагревателей желательно обходиться без сварки. При необходимости рекомендуется применять аргонодуговую сварку, при которой состав свариваемых сплавов в месте шва практически не меняется.

В порядке исключения можно использовать ручную электродуговую сварку со следующими электродами из нихрома: ЦЧМ-3, ИМЕТ-4-П, ИМЕТ-4, ЦТ-28, ИМЕТ-10, а также сплавов Fe—Сr—Аl (стержень из свариваемого материала с защитным покрытием основного типа).

Сварка выполняется при постоянном токе обратной полярности (положительный заряд на электроде). Сварное соединение следует конструктивно разгружать от возможных механических и термических напряжений с помощью муфт, втулок и т. п. Газовую сварку применять не следует.

Помимо сплавов, поставляемых по ГОСТ 12766—67 для высокотемпературных печей с окислительной атмосферой, имеется ряд сплавов, которые выпускаются по техническим условиям. Эти сплавы изучены в меньшей степени, чем сплавы, рассмотренные выше. Основные характеристики и сортамент сплавов представлены в табл. 171.

Основные характеристики и сортамент сплавов, выпускаемых по техническим условиям

 

Принятые обозначения и пересчетные значения для ряда единиц измерения

Принятые обозначения

Принятые обозначения

Принятые обозначения

Принятые обозначения

Пересчетные значения для ряда единиц измерения