Водные свойства почвы

Водные свойства почвы

ВОДНЫЕ СВОЙСТВА ПОЧВЫ характеризуют ее способность воспринимать влагу, перемещать и отдавать ее. Сюда относятся:

1) Гигроскопичность почвы, т. е. способность поглощать водяные пары из воздуха и конденсировать их на поверхности своих частиц. Ее выражают обычно отношением веса гигроскопической влаги к весу взятой навески сухой почвы. Гигроскопичность зависит от удельной поверхности почвы, т. е. суммы поверхностей всех ее частиц, деленной на их объем. Чем мельче частицы почвы, тем выше ее удельная поверхность; в связи с этим глинистые почвы, обладают большей гигроскопичностью, чем песчаные. Еще большей гигроскопичностью обладают торфяные почвы и вообще почвы, богатые перегноем. По Митчерлиху, гигроскопичность чистого кварцевого песка 0,12, песчаных почв 1,03—1,23, супеси 1,71, легкого суглинка 2,27—2,64, среднего суглинка 3,07—3,09, тяжелого суглинка 4,12, глинистой почвы 5,97, торфа верхового болота 21,7. Гигроскопичность почвы имеет большое значение, т. к. установлено, что гигроскопическая влага удерживается частицами почвы с такой силой, что является недоступной для растений; этим объясняется то, что на болотистых почвах, содержащих большое количество влаги, растения часто страдают от ее недостатка и природная растительность торфяных болот бывает снабжена приспособлениями для уменьшения испарения влаги. Величина гигроскопичности почвы, как производная ее удельной поверхности, позволяет судить о степени коллоидальности почвы.

2) Влагоемкость почвы, т. е. способность поглощать капельножидкую влагу и удерживать ее; она выражается отношением веса влаги, находящейся в почве, к весу сухой почвы. Особенно большое практическое значение имеет капиллярная влагоемкость почвы, характеризующая количество влаги, заполняющей почвенные капилляры. Такое насыщение почвы влагой является оптимальным, т. к. только в этих условиях мы имеем в почве то соотношение между анаэробными и аэробными условиями, при котором обеспечивается благоприятный ход биологических процессов. Влагоемкость почвы тесно связана с запасом органического вещества в ней; последнее, набухая, способно поглощать огромные количества влаги. По Митчерлиху, влагоемкость песчаной почвы составляет 18,8%, легкого суглинка - 20,2%, тяжелой глинистой почвы - 80,9 %, торфяной почвы - 126 %. Для определения капиллярной влагоемкости образец почвы обычно насыщается влагой снизу до постоянного веса.

3) Водопроницаемость и водопроводимость почвы; первая характеризуется способностью почвы воспринимать влагу, поступающую в нее сверху, а вторая - способностью почвы пропускать через себя влагу. Водопроницаемость определяется обычно в полевых условиях (методы Нестерова-Дояренко, Качинского и др.) и выражается количеством воды, поглощаемым определенной площадкой почвы в единицу времени. Водопроводимость определяется в лабораторных условиях и выражается количеством влаги, проходящей через столбик почвы определенной высоты в единицу времени. Водопроницаемость и водопроводимость тем выше, чем больше в почве промежутков, по которым влага может передвигаться вниз, подчиняясь силе тяжести (т. е. некапиллярных промежутков). Наиболее проницаемы структурные почвы, содержащие некапиллярные промежутки между своими структурными отдельностями; при этом решающую роль играет прочность почвенной структуры. На почвах с непрочной структурой все структурные отдельности размываются первыми же порциями воды, и почва после этого теряет все преимущества структурности. Для водопроницаемости почвы в естественных условиях решающее значение имеет характер подпочвенного слоя. При его непроницаемости влага застаивается на поверхности и заполняет на продолжительный срок некапиллярные промежутки пахотного слоя; вытесняя воздух из почвы, влага создает такой воздушный режим, который сказывается неблагоприятно как на ходе микробиологических процессов в почве, так и на развитии растений, причиняя вымочки и т. п. На таких тяжелых непроницаемых почвах приходится отводить влагу искусственными мерами, устраивая дренаж.

4) Водоподъемная способность почвы, т. е. способность подавать влагу из своих нижних слоев в верхние, откуда влага подвергается испарению (испаряемость почвы). Поднятие воды при этом происходит по капиллярным промежуткам, по которым движение воды происходит независимо от силы тяжести. Бесструктурная почва при уплотнении представляет собой подобие фитиля, непрерывно подающего влагу из более глубоких слоев. На структурных же почвах испарение происходит медленно вследствие разрыва капилляров. Водоподъемная способность почвы м. б. изучаема путем наблюдения за высотой и скоростью поднятия влаги в стеклянных трубках. Испаряемость почвы м. б. определяема различными методами в полевых и лабораторных условиях и выражается обычно количеством влаги, испаряемой единицей площади почвы в единицу времени. Регулирование испаряемости почвы имеет большое практическое значение, так как заплывшая (бесструктурная) почва в жаркую погоду может потерять огромное количество влаги. В виду этого появившаяся летом на поле после дождя корка должна быть немедленно уничтожаема путем боронования. Получившийся в результате этого рыхлый слой изолирует почвенные капилляры от наружного воздуха. Точно также не следует оставлять невспаханной почву после уборки растений (жнивье).

Водные свойства почвы выражают ее водный режим, или водный баланс, определяемый: 1) поступлением влаги и 2) отдачей влаги.

То постоянно меняющееся количество влаги, которое находится в данный момент в почве, называется влажностью почвы - весовой или объемной, в зависимости от того, выражается ли она в % от веса сухой почвы или от ее объема. Почвенная влага м. б. в различных состояниях: 1) гравитационная влага, заполняющая некапиллярные промежутки и передвигающаяся, подчиняясь силе тяжести; 2) капиллярная влага, заполняющая капиллярные промежутки и при своем передвижении не подчиняющаяся силе тяжести; 3) гигроскопическая влага, представляющая молекулы воды, удерживаемые частицами почвы вследствие молекулярного притяжения. Гигроскопическая влага передвигается только под влиянием температуры и недоступна для растений. Влажность почвы имеет очень большое практическое значение, являясь одним из основных факторов роста растений, потребляющих за время своего развития огромное количество влаги (в 200—500 раз больше веса создаваемого ими сухого вещества).

В засушливых районах проблема борьбы за влагу является одной из самых важных проблем научного земледелия. Южными и юго-восточными сельскохозяйственными опытными станциями СССР (а также сельскохозяйственными опытными станциями США) разработан ряд приемов обработки (чистые пары, осенняя вспашка, введение пропашного клина и другие), позволяющих получать более или менее удовлетворительный урожай даже в засушливые годы. Основное требование при борьбе за влагу - это необходимость создания прочной структуры почвы. Все приемы, которые не ставят этого момента во главу угла, являются паллиативами. Осуществление же этого требования возможно лишь при переходе к травопольной системе земледелия. При замене ею теперешнего стихийного хозяйства, основанного исключительно на зерновых хлебах, очень многие районы перестали бы быть засушливыми. Вспомогательную роль в сбережении почвенной влаги может также сыграть селекция засухоустойчивых сельскохозяйственных растений. В тех районах, где количество осадков недостаточно, необходимо прибегать к искусственному орошению. Сроки и нормы орошения необходимо согласовывать с потребностями растений во влаге.

Если влажность почвы часто является решающим и непосредственным фактором для развития растений, то не меньшее влияние она имеет и на микробиологическую деятельность почвы. На высохшей почве в жаркую погоду всякая микробиологическая деятельность приостанавливается, происходит прямое сгорание органического вещества, в результате чего непроизводительно теряется нужный для растений азот. При избыточной влажности в почве идут неблагоприятные анаэробные процессы, связанные как с потерей азота, так и с накоплением в почве закисных соединений, вредно влияющих на растения. Влажность почвы оказывает также влияние на ее физические свойства, уменьшая связность почвы. Пересохшая уплотненная почва бывает иногда настолько связной, что невозможно обработать ее, влажная же почва не оказывает такого сопротивления орудиям обработки и легче крошится на отдельности. Обратное влияние оказывает влажность на прочность почвенной структуры. Непосредственными наблюдениями установлено, что сухая почва легче подвергается размыванию водой, чем влажная почва. Динамика влажности почвы во времени протекает различно в зависимости от растительного покрова почвы и ее культурного состояния. Изучение динамики почвенной влажности производится путем взятия проб почвы с определенной глубины и определения количества влаги. Для этого определения существуют несколько методов: 1) определение разницы в весе до и после высушивания пробы почвы в сушильном шкафу; 2) пикнометрический, спиртовой (по изменению крепости спирта, в который помещается влажная навеска почвы); 3) карбидный (по количеству ацетилена, выделившегося от реакции почвенной влаги с карбидом кальция); 4) электрометрический (по изменению сопротивления в цепи тока) и др. Электрометрический метод применяется также для определения влажности почвы непосредственно в полевых условиях.

 

 

Источник: Мартенс. Техническая энциклопедия. Том 3 - 1928 г.