Стратосфера

СтратосфераСТРАТОСФЕРА. Земная атмосфера делится на ряд слоев, отличающихся между собой по своему физическому состоянию. Важнейшими слоями являются: нижний слой - тропосфера, характеризующийся процессом перемешивания воздушных масс и как следствие понижением температуры с высотой. Высота, до которой развивается слой тропосферы, зависит от интенсивности тех факторов, которые вызывают процессы перемешивания: солнечного нагревания, механического влияния земной поверхности и пр. Выше слоя тропосферы находится слой, в котором процессы перемешивания отсутствуют или играют ничтожную роль. Принято обычно называть атмосферу, находящуюся выше слоя тропосферы, стратосферой, что означает зону, характеризующуюся слоистым строением. Пограничная область между тропосферой и стратосферой называется тропопаузой. Стратосфера отличается от тропосферы, прежде всего отсутствием всех эффектов процессов перемешивания, которые свойственны тропосфере: понижения температуры, облачных образований и пр. Вместе с этим в стратосфере частично вследствие низких ее температур, частично вследствие отсутствия притока от земной поверхности водяные пары находятся в совершенно ничтожном количестве. В таблице приведены значения температур, давления и удельного веса воздуха на различных высотах до 40 км по данным наблюдений европейских станций.

Значения температур, давления и удельного веса воздуха на различных высотах до 40 км по данным наблюдений европейских станций

Те же данные приведены графически на фиг. 1.

Значения температур, давления и удельного веса воздуха на различных высотах до 40 км по данным наблюдений европейских станций

Из хода температуры видно, что в летнее время стратосфера (слой, где температура перестает понижаться) начинается на высоте 12 км, а зимой - на высоте 11 км. Однако приведенные числа характеризуют только среднее распределение над Европой. Многочисленные зондировки в различных частях земного шара дали в настоящее время полную картину температурного строения стратосферы. На фиг. 2 приведена схема этого распределения по широтам по Раманатану.

Схема температурного распределения по широтам по Раманатану

Ход температур с высотой приведен по Раманатану на фиг. 3, и там можно видеть, что на экваторе, где высота стратосферы наибольшая и где достигаются наиболее низкие температуры (до -90°С), ход температуры в слое стратосферы характеризуется резким повышением температуры с высотой. В районах, более удаленных от экватора, возрастание температуры с высотой оказывается менее заметным.

Однако данные радиозондовых подъемов в полярных районах заставляют признать, что и здесь в стратосфере происходит довольно резко выраженное повышение температуры с высотой, как это видно на фиг. 3, дающей распределение температуры по радиозондам, выпущенным автором с цеппелина в 1931 г.

Распределение температуры по радиозондам, выпущенным с цеппелина в 1931 г.

На фиг. 4 приведена схема распределения температур в зимнее и летнее время, предложенная в последнее время (январь 1934 г.) Пальменом.

Схема распределения температур в зимнее и летнее время, предложенная в последнее время (январь 1934 г.) Пальменом

Особенности этой схемы, полученной Пальменом на основании данных зондировок в Абиско (Сев. Швеция 68°21') и по данным подъемов радиозондов автора с цеппелина, следующие. В летнее время температуры стратосферы резко повышаются по мере перехода на север. В то время как над экватором на высоте 17 км мы имеем температуры, близкие к -80°С, над полярными районами на той же высоте температуры приближаются к -35°С. Самый ход температуры (падение температуры на 111 км в направлении наибольшего понижения температуры) в полярных районах хорошо характеризуется данными подъемов радиозондов с цеппелина, очень близко совпавшими с данными подъемов простых зондов в Абиско (фиг. 5).

Данные подъемов простых зондов в Абиско

В зимнее время картина распределения температуры в стратосфере и над различными широтами отличается от летней в том отношении, что горизонтальный градиент температуры (падение температуры на 111 км в направлении наибольшего ее понижения), имеющий очень большое значение и направленный к экватору в летнее время, в зимнее оказывается значительно меньше, т. к. температура в стратосфере и над полюсами очень низки. По Пальмену в самых северных широтах (севернее 55°) в стратосфере так же, как и в тропосфере, градиент температуры по горизонтали направлен на стратосферу.

Ниже приведены данные о повторяемости высот с минимальной температурой воздуха (конец тропосферы и начало тропопаузы) по наблюдениям Института аэрологии в Слуцке (близ Ленинграда) за 1934 —1935 гг.

Данные о повторяемости высот с минимальной температурой воздуха (конец тропосферы и начало тропопаузы)

Из данных видно, что в то время как на высотах от 9 до 11 км мы имеем больше 50% всех случаев начала тропопаузы, на высотах ниже 1 км повторяемость начала тропопаузы сводится к нулю. Ниже приведены повторяемости в % различных значений минимальных температур для того же пункта:

Повторяемости в % различных значений минимальных температур для того же пункта

Из данных видно, что в стратосфере чаще всего встречаются температуры от -45 до -55°С (более 50% всех случаев), в то время как температуры ниже -70 и выше -35°С встречаются как исключение. Сравнительное постоянство температур с высотой в стратосфере наводит естественно на мысль, что здесь мы имеем дело с т. н. лучистым равновесием, при котором каждая воздушная частичка излучает за данный промежуток времени такое же количество энергии, как и получает. Теории лучистого равновесия развивались Гемфри, Эмденом, Гольдом и Хергезеллем. В последнее время этим вопросом занимались Мюгге, Симпсон и Альбрехт. Альбрехт развил теорию лучистого равновесия, рассматривая отдельные части спектра водяного пара. Он пришел к заключению, что тепловое излучение нижних слоев атмосферы, так же как и земной поверхности, имеет очень малое значение для состояния стратосферы и что в верхних слоях атмосферы должен находиться слой с повышенной степенью излучения, под влиянием которого создается резкая граница между слоем тропосферы и стратосферы и в котором содержание водяного пара составляет величину, промежуточную между 0,015 и 0,15 мм. На фиг. 2 высота этого слоя показана в виде заштрихованной полосы. Понижение температуры этого слоя по мнению Альбрехта и ведет к общему понижению температуры в тропосфере по мере поднятия. Приведенное объяснение не может быть, однако, полностью принято. Действительно, уже сам Альбрехт отмечает несоответствие своих рассуждений с тем явлением, что рассматриваемый им слой находится в непосредственной близости к стратосфере только под широтами, большими 50°. С другой стороны, эта теория не может объяснить значительных понижений температуры над экватором. По-видимому теория Альбрехта может служить только для объяснения того увеличенного понижения температуры, сказывающегося на увеличении вертикальных градиентов температуры, которые наблюдаются в верхних слоях тропосферы и не м. б. объяснены другими соображениями. Во всяком случае, пониженная температура стратосферы определяется незначительным поглощением тепловой энергии солнечных лучей воздухом стратосферы.

Внешняя картина распределения температуры в слое стратосферы бывает различной. Шмаусс различает 4 типа такого распределения. Нормальный тип характеризуется сменой падения температуры в тропосфере, б. или м. изотермическим слоем в стратосфере, температура которого до значительных высот остается постоянной. Второй тип отличается от первого тем, что тропосфера отделяется от изотермического слоя стратосферы б. или м. резко выраженной инверсией. Возможно, что возникновение слоя инверсии связано с усиленной конвекцией в тропосфере или, как можно думать, следуя рассуждениям Альбрехта, в результате интенсивного излучения эффективного слоя с содержанием водяных паров 0,015— 0,15 мм. В третьем типе ход температуры в стратосфере имеет вид слабо выраженной инверсии, т. е. постепенного повышения температуры с высотой. Наконец четвертый, сравнительно редко встречающийся тип распределения температуры в стратосфере характеризуется отсутствием резко выраженного слоя перехода от тропосферы к стратосфере, как это имеет место в других типах. Вместо этого переход проявляется в виде замедленного понижения температуры с высотой, переходящего постепенно в изотермию. Пальмен, подробно рассматривавший различные случаи распределения температуры в стратосфере, пришел к мысли о выделении следующих трех основных типов (фиг. 6).

Три основных случая распределения температуры в стратосфере

В первом случае (кривая I) понижение температуры тропосферы переходит в изотермию, остающуюся на всех высотах стратосферы. Этот тип он считает «нормальным» типом. Во втором типе (кривая II Пальмена) температура при вступлении в стратосферу резко повышается, достигает максимального значения на расстоянии нескольких км и выше начинает снова понижаться. Этот тип Пальмен считает характерным для циклонального режима. Наконец третий тип (кривая III) - антициклональный - характеризуется тем, что температура в стратосфере повышается на всех высотах, хотя и с различной скоростью. При этом, по мнению Пальмена, циклональный тип имеет в стратосфере температуру выше нормальных, антициклональный - ниже нормальных. Т. о. температура в обоих этих типах с высотой как бы стремится к приближению к нормальным значениям.

При изучении атмосферных процессов тропосферы естественно возникает мысль о той роли, которую может играть в этих процессах стратосфера. Является ли этот слой совершенно мертвым слоем, не имеющим значения для жизни тропосферы, или, наоборот, происходящие в нем процессы диктуют направление и характер развития процессов в тропосфере. В настоящее время можно указать на две основные школы аэрологии, придерживающиеся совершенно противоположных взглядов. Первая школа (проф. фон Фиккер) приписывает стратосферным процессам если не доминирующее, то во всяком случае руководящее значение в развитии атмосферных процессов тропосферы. Роль стратосферы по воззрениям этой школы хорошо выражается словами Н. Шоу, что динамика атмосферы определяется верхними слоями, в то время как чисто физические процессы, связанные с конденсацией, образованием облаков и пр., развертываются в тропосфере. Происхождение первичных волн в стратосфере может быть связано как с термическими, так и чисто динамическими причинами. Термические причины связаны с приходом теплых или холодных воздушных масс, перемещающихся по горизонтали. Т. о. по мнению этой школы в стратосфере мы можем иметь теплые пли холодные волны по образцу тех, которые развиваются в тропосфере в области полярного фронта. Совершенно иных взглядов придерживается норвежская школа. Взгляды последней развивались Бержероном, Бьеркнесом, Пальменом и др. Эти авторы дали детальный разбор явлений в стратосфере на основании фактического материала по данным зондовых и радиозондовых подъемов. Норвежская школа также принимает, что в стратосфере развиваются температурные волны, но про вхождение их она целиком связывает с процессами в тропосфере. Пальмен и Бьеркнес различают два основных фактора, могущих вызвать соответствующие колебания температуры в стратосфере. Первый фактор определяется термически-адвективными процессами, при которых в тропосфере развивается приток теплых или холодных масс. Особенно детально исследовал Пальмен явления, происходящие в полярном фронте. На основе фактического материала температурного зондирования Пальмен дал картину распределения температуры в полярном и тропическом воздухе. Полярные массы характеризуются пониженными температурами в тропосфере и повышенными температурами в стратосфере. Тропопауза в полярных массах оказывается значительно ниже, чем в тропических массах. В отдельных случаях Пальмен констатировал опускание тропопаузы до 5 км. Наоборот, в тропических массах тропопауза находится на повышенном уровне, температуры в нижних слоях повышены, в стратосфере - понижены. Из сравнения данных для тропических и полярных масс выясняется, что наибольшая разность температуp наблюдается на высоте 4—7 км и на высоте 11—13 км, причем эти разности температур имеют противоположный знак. Отсюда Пальмен приходит к выводу, что достаточно сильные вхождения теплых и холодных масс, происходящие в тропосфере, получают свое отражение и в стратосфере. При этом вторичная стратосферная волна смещена фазами, и в начальный момент развития волны в тропосфере связанная с ней волна получает противоположный знак. При этом Пальмен приходит к важному для норвежской теории заключению, что поверхность раздела между полярными и тропическими массами, как это и принималось в первоначальной теории Бьеркнеса, доходит до тропосферы, а не ограничивается слоем в 4—5 км. Наиболее ясно выражена поверхность раздела на средних высотах. Однако, как отмечают и сам Пальмен и представители немецкой школы, в настоящее время трудно утверждать, чья точка зрения может считаться окончательно победившей. Совершенно несомненно, что только детальные исследования атмосферы, имеющие целевое назначение, могут дать материал для окончательного суждения в этом вопросе.

Здесь следует остановиться на некоторых обстоятельствах, могущих дать указания на особенности развития атмосферных процессов. Прежде всего, необходимо поставить вопрос о том, в каком из этих слоев мы имеем непосредственный приток энергии, могущий вызвать те или иные динамические процессы. Под этим притоком энергии необходимо подразумевать неоднородный поток, создающий неравномерное нагревание или охлаждение. Очевидно, что наличие неравномерно нагревающейся земной поверхности, неравномерное распределение доходящей до земли солнечной энергии и пр. делают тропосферу несомненным очагом неравномерно поступающей энергии. В стратосфере наблюдается, с одной стороны, совершенно равномерная солнечная инсоляция, т. к. наклон солнечных лучей практического значения для интенсивности приходящей к данному участку солнечной энергии не имеет; с другой стороны, здесь совершенно отсутствуют облака, пылевые частички и пр. Первоисточник т. о. всякого рода динамических возбуждений - неравномерно поступающая энергия - здесь отсутствует. Кроме того несомненно, что в стратосфере мы встречаемся с наличием резких колебаний температур, констатируемых как по зондам за границей, так и зондажом при помощи ежедневных исследований радиозондами у нас. Приходится поэтому признать, что происхождение этих колебаний м. б. связано, как думает Пальмен, только с процессами, развивающимися в глубинах тропосферы. Стратосфера представляет собой слой, отзывающийся на соответствующих процессах в тропосфере. Противоположность фаз тропосферных волн, отмеченная Пальменом, позволяет думать, что роль стратосферы в этих случаях заключается в противодействии развитию резких колебаний в тропосфере, связанному с поглощением некоторого количества энергии тропосферных процессов. Но с другой стороны, стратосферные волны, будучи созданы, не могут не отразиться на развитии тропосферных процессов. Можно также предполагать, что, раз возникнув, стратосферные возмущения могут оторваться от соответствующего им первичного процесса в тропосфере и получить самостоятельную активную роль. Совершенно очевидно, что интерференция стратосферных и тропосферных возмущений играет громадную роль в развитии явлений погоды. Т. о. роль стратосферы в развитии и в некоторых случаях даже возникновения тропосферных возмущений того же порядка несомненна. При этом можно предполагать, что эта роль имеет стабилизирующий эффект, поглощая часть энергии, развиваемой тропосферными возмущениями. Вследствие изотермического распределения температурный слой стратосферы должен оказывать чрезвычайно сильное сопротивление колебаниям воздушных масс по вертикали, возникающим при прохождении теплых или холодных волн. Т. о. слой стратосферы представляет собой как бы эластичный слой, демпфирующий колебания нижнего слоя. Автор неоднократно указывал на проявление в атмосферных процессах своеобразного принципа стабилизации, заключающегося в том, что развитие атмосферных процессов под действием какого-либо нарушающего нормальное состояние атмосферы фактора происходит в таком направлении, при котором действие указанного фактора или ослабляется или совершенно исчезает. Сказанное выше относительно роли стратосферы позволяет думать, что и здесь мы имеем своеобразное проявление закона стабилизации атмосферных процессов. Естественно, что для правильного понимания происходящих в тропосфере явлений совершенно необходимо иметь подробные данные, характеризующие состояние стратосферы. В особенности важны для составления анализа распределение температуры и влажности до слоя тропопаузы и в самом слое тропопаузы, т. к. высота тропопаузы и ее строение оказываются чрезвычайно характерными для происходящих в тропосфере процессов.

Стратосфера представляет интерес не только с точки зрения ее роли в процессах, создающих погоду в тропосфере. В связи с тем, что в тропосфере наличие облаков, осадков и пр. нередко создает непреодолимые препятствия для совершения полета, в особенности на дальние расстояния, существует стремление освоить стратосферу как зону дальних перелетов. В этом отношении стратосфера имеет ряд преимуществ перед тропосферой. Помимо отсутствия облаков и совершенного исключения возможности оледенения в стратосфере следует ожидать, что воздушные течения отличаются исключительной правильностью в отличие от сильно завихренных течений тропосферы. Что касается скорости движения воздушных масс, то наблюдения показывают, что в большинстве случаев здесь отмечается некоторое замедление скорости. Однако не следует думать, что стратосфере свойственны штили. Наиболее обычной скоростью для стратосферы является скорость 10—20 м/сек. В отдельных случаях, в особенности в зимнее время, здесь отмечаются скорости до 30—35 м/сек (более 100 км/ч). Наконец стратосфера привлекает внимание современной физики, так как именно здесь развертывается наиболее эффективное действие таинственных космических лучей, природа которых продолжает оставаться невыясненной до сих пор.

Резюмируя сказанное выше, мы можем отметить, что тщательное изучение явлений в стратосфере, в частности в ее нижних слоях 10—20 км, представляет, несомненно, одну из важнейших задач современной аэрологии как для целей завоевания этой зоны для воздушного транспорта, так и для выяснения ряда вопросов теоретической аэрологии и теоретической физики. Приведенные выше данные относятся к тем слоям стратосферы, которые были исследованы методами непосредственного зондирования при помощи самопишущих или радиопередающих приборов. Другими методами (звукометрическим, посредством определения загорания и потухания метеоров, определения переходных моментов затухания и пр.) в настоящее время доказано, что с высоты примерно 40 км находится слой, в котором температура с высотой резко повышается, доходя на высоте 50—60 км до значений +60°С и более. Вопрос о составе воздуха в стратосфере для нижних слоев последней в настоящее время можно считать решенным в результате измерений, произведенных при поднятии стратостата «СССР-1» в 1933 г. Именно исследование проб воздуха, забранных при этом полете, показало, что на высоте 18500 м содержание кислорода составляло 20,95%, т. е. величину, чрезвычайно (в пределах точности измерений) близкую к содержанию кислорода у земной поверхности. Об изменении состава воздуха в слоях выше 19000 м пока не имеется достоверных сведений. По-видимому, надо предполагать, что вследствие большого удельного веса кислорода, а также вследствие несомненного отсутствия в верхних слоях конвективного перемешивания содержание кислорода с высотой должно постепенно убывать. Дальнейшие измерения могут внести ясность в этот вопрос. Весьма важным теоретически и практически оказывается содержание озона в воздухе. Последние исследования Регенера (Штуттгарт) показали, что весь атмосферный озон находится в слое до 28 км, причем главная масса озона сосредоточивается в слое 12—28 км. Известно, что озон оказывает вредное влияние на резину. Соответственно этому Регенер рекомендует давать шарам-зондам возможно большую скорость поднятия с тем, чтобы действие озона на оболочку было по возможности кратковременным.

Методы исследования стратосферы. Практически для исследования стратосферы применимы различные способы. Исследование стратосферы шарами-зондами заключается в том, что к небольшому шару подвешивают особый прибор, автоматически записывающий при поднятии в атмосфере состояние температуры, давления и влажности. После достижения максимальной высоты и разрыва оболочки шара прибор опускается вниз или на специальном парашюте или на дополнительном шаре, раздутом в меньшей степени, чем главный шар. Очевидно, что данный способ совершенно неприменим для мало обитаемых пространств. Поэтому автор предложил в 1923 г. и к 1930 г. разработал и применил новый метод - радиозонда, заключающийся в том, что прибор особой конструкции снабжается специальным передатчиком и во время полета передает вниз данные о состоянии метеорологических элементов. Наибольшая достигнутая таким методом высота составила 29600 м (Институт аэрологии). Для шаров-зондов наибольшая высота поднятия составляет 36000 м (Германия). Для получения данных о распределении температуры в высоких слоях атмосферы и в том числе в стратосфере подъемы шаров-зондов и радиозондов совершаются в настоящее время по особой программе в т. наз. «международные дни» по всему миру. В СССР исследования стратосферы производятся ежедневно в ряде пунктов: Слуцке, Москве, Киеве, Севастополе, Тифлисе и пр. В Институте аэрологии в Слуцке (близ Ленинграда) методом радиозонда исследования производятся ежедневно два раза (днем и ночью). Непосредственные исследования стратосферы оказались возможными благодаря применению стратостата, представляющего воздушный шар большого объема с герметичной гондолой. Идея таких аэростатов принадлежит Д. И. Менделееву, предложившему ее еще в 1875 г. Первое поднятие на стратостате было совершено проф. Пиккаром (Бельгия). В СССР были совершены три полета: «СССР-1» - в 1933 г., «Осоавиахим-1» - 30 января 1934 г. и «СССР-1 bis» 24/VI 1935 г. В том же году американский стратостат «Эксплорер-2» поднялся на высоту 22040 м. Основным затруднением для достижения больших высот в стратосфере является низкое давление этих слоев. Убывание удельного веса воздуха, соответствующее этому давлению, чрезвычайно уменьшает подъемную силу шара. Необходимо поэтому иметь шары громадных размеров, чтобы они могли сохранять достаточную подъемную силу на больших высотах. Например, для поднятия на высоту 20—22 км необходимо иметь оболочку не менее 20—25 тыс. м3. Для поднятия на высоту 30 км объем оболочки должен превышать (для самой легкой материи оболочки) 100—150 тыс. м3 и т. д. Значительно проще достигаются большие высоты применением эластичных резиновых оболочек, могущих увеличивать свой объем до чрезвычайно больших размеров. Например, шар, имевший у земли объем в 4,2 м3, увеличил на высоте 30 км свой объем до 366 м3, растянув свою оболочку от толщины в 0,3 мм до 0,0088 мм. Можно думать, что достижение больших высот (больше 30 км) возможно вообще только для резиновых оболочек. Исследование слоев выше 35—40 км производится звукометрическим методом, основанным на исследовании распределения слышимости взрывов у земной поверхности на различных расстояниях по всем направлениям от места взрыва. Принцип этих исследований основан на том, что звуковая волна, распространяясь вверх, отражается от слоя на высоте 35—40 км и возвращается на землю, образуя зоны аномальной слышимости звука на больших расстояниях. Для исследования еще больших высот - 80—100 км - применяются исследования распространения электромагнитных волн, отражающихся от слоя на высоте 100 км, носящего название слоя Хивисайда и обладающего большими значениями электрической проводимости. Наконец для исследования стратосферы в слоях выше 40 км применяются оптические исследования хода сумерек, высоты загорания и потухания метеоров и спектра северного сияния. Последние исследования дают нам данные о структуре и составе самых высоких слоев атмосферы.

 

Источник: Мартенс. Техническая энциклопедия. Доп. том - 1936 г.